

ACRIVON PREDICTIVE PRECISION PROTEOMICS (AP3)

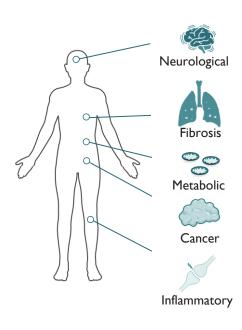
OVERCOMING LIMITATIONS OF GENETICS-BASED PRECISION MEDICINE

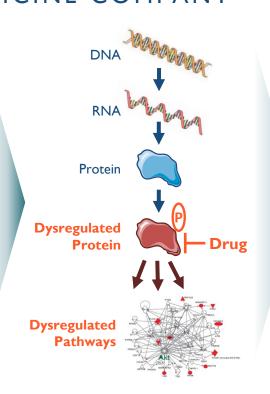
CORPORATE PRESENTATION
AUGUST 2024

FORWARD-LOOKING STATEMENTS

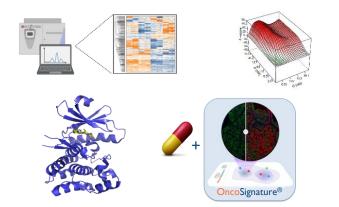
Certain information contained in this presentation includes forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995 regarding our future results of operations or financial condition, business strategy and plans and objectives of management for future operations. In some cases, you can identify forward-looking statements because they contain words such as "anticipate," "believe," "contemplate," "continue," "could," "estimate," "expect," "intend," "may," "plan," "potential," "predict," "project," "should," "target," "will," or "would" or the negative of these words or other similar terms or expressions. Our forward-looking statements are based primarily on our current expectations and projections about future events and trends that we believe may affect our business, financial condition and results of operations. The outcome of the events described in the forward-looking statements is subject to risks and uncertainties, including the factors described in our filings with the U.S. Securities and Exchange Commission. New risks and uncertainties emerge from time to time, and it is not possible for us to predict all risks and uncertainties that could have an impact on the forward-looking statements contained in this presentation. The results, events, and circumstances reflected in the forward-looking statements may not be achieved or occur, and actual results, events, or circumstances could differ materially from those described in the forward-looking statements.

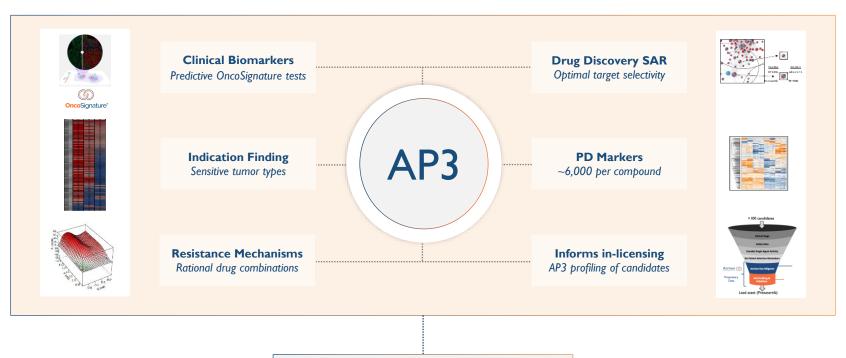
You are cautioned not to place undue reliance on these forward-looking statements, which are made only as of the date of this presentation. We undertake no obligation to update any forward-looking statements or to reflect new information or the occurrence of unanticipated events, except as required by law.


CRITICAL CHALLENGES FACING BIOPHARMA INDUSTRY


Challenge	Acrivon Predictive Precision Proteomics (AP3)
Discovering potent compounds suitable for clinical monotherapy	Optimal target/pathway selectivity for rapid generation of single agent active compounds
Determining which patients will benefit from those drugs	Identification of drug-sensitive indications and patients for actionable precision medicine
Preventing or reducing resistance to maximize response durability	Ability to rapidly identify and overcome resistance mechanisms

AP3 is a proprietary, machine learning-enabled internal R&D engine that effectively addresses these challenges, driving rapid advancement of our pipeline

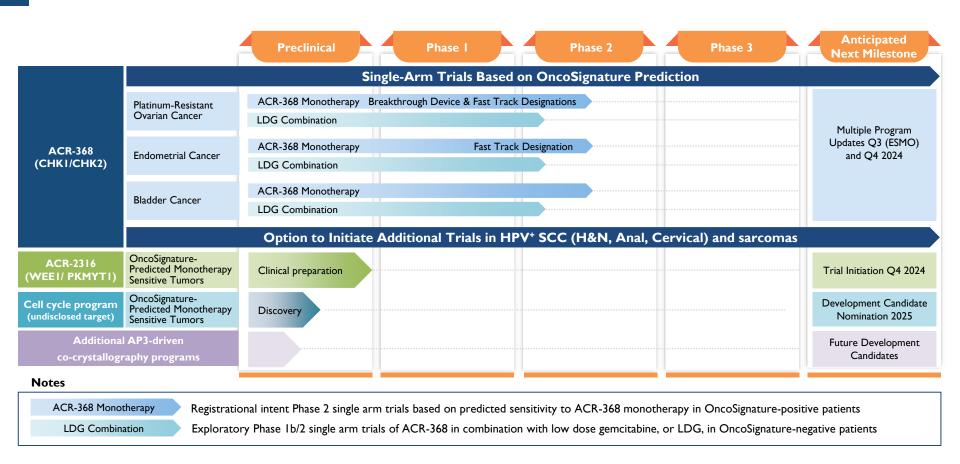

ACRIVON THERAPEUTICS - A NEXT-GENERATION PRECISION MEDICINE COMPANY


Acrivon Predictive Precision Proteomics (AP3)

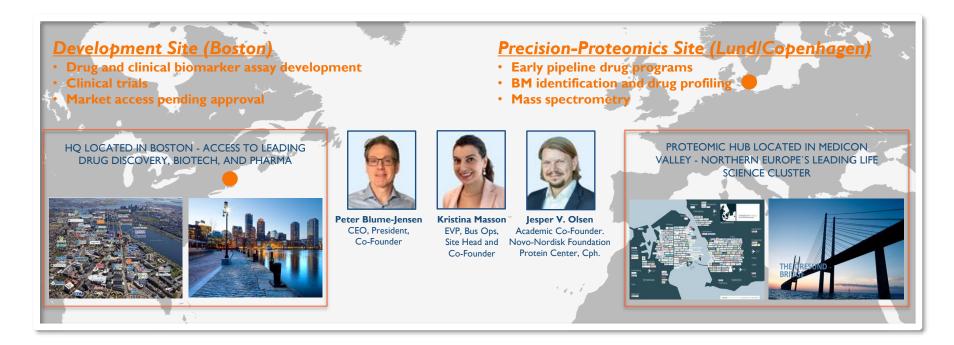
- Enables an exact match between the disease-driving, dysregulated pathways with a drug's mechanism of action (Acrivon meaning ≈ exact, accurate)
- Broadly applicable in R&D (biological SAR, resistance, patient responders); leveraged for internal pipeline

Blume-Jensen, P & Hunter, T: Oncogenic kinase signaling Nature (2001) Olsen, JV et al: Global, in vivo, and site-specific phosphorylation dynamics in signaling networks Cell (2006); Andersen, JN et al: Pathway-based identification of biomarkers for targeted therapeutics: personalized oncology with PI3K pathway inhibitors Sci Transl Med (2010)

AP3: HIGHLY DIFFERENTIATED - MULTIPLE R&D DELIVERABLES



Intellectual Property


De novo exclusivity & protection against generics

ACRIVON PIPELINE

ACRIVON THERAPEUTICS FOUNDATION

Founded 2018, IPO November 2022 (NASDAQ:ACRV)

For more information, please visit https://acrivon.com

ACCOMPLISHED LEADERSHIP TEAM

Peter Blume-Jensen, M.D., Ph.D. CEO, President, Founder

- · Executive Serono, Merck & Co., Daiichi Sankyo
- CSO Metamark Marketed prostate proteomic test ProMark®
- Inventor Acrivon Predictive Precision Proteomics (AP3)

Rasmus Holm-Jorgensen Chief Financial Officer

- Novo Nordisk Finance and IR
- Synageva pipeline expansion and \$9bn sale to Alexion
- · Kiniksa founding team, IPO and commercial launch

Kristina Masson, Ph.D., M.B.A Site Head Acrivon AB, Co-Founder **EVP Business Operations**

- · Cross-functional Leadership Merrimack Pharmaceuticals, MIT/BROAD
- · Founder and CEO, OncoSignature AB (acquired by Acrivon Therapeutics)

Jean-Marie Cuillerot, M.D. Chief Medical Officer

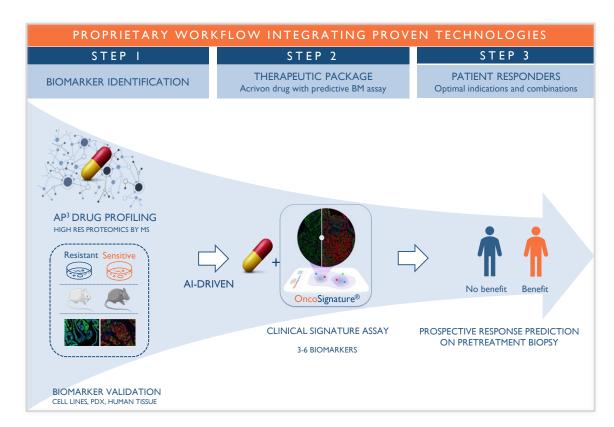
- · Chief Medical Officer, Agenus, Dragonfly
- · Global head of clinical development in immuno-oncology at EMD Serono
- · Clinical development leadership roles at **BMS** and Novartis

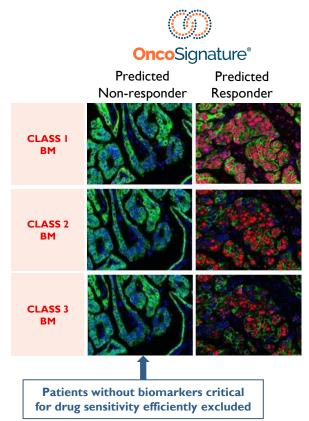
Eric Devroe, Ph.D. Chief Operating Officer

- · Founder and CEO, Opsonix
- Business executive MD Anderson Cancer Center and Metamark
- EIR Wyss Institute, Harvard
- · Associate, Flagship Pioneering

Erick Gamelin, M.D., Ph.D. Chief Development Officer

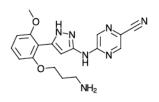
- · Professor, CEO, large national cancer center and hospital
- · Executive Amgen, Pfizer, Dynavax, MacroGenics: CMO STEP Pharma
- >100 ph 1-3 oncology trials

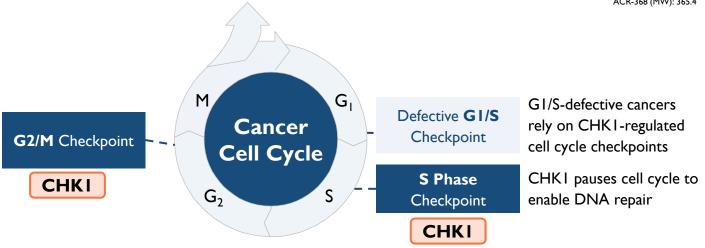



Mary-Alice Miller, J.D. Chief Legal Officer

- Over 20 years corporate legal experience
- Served as general counsel of 2 companies taken public
- Boston Business Journal "40 Under 40"

AP3 PLATFORM: DRUG RESPONSE PREDICTION IN INDIVIDUAL PATIENTS




[&]quot;Disease Pathway-Based Method to Generate Biomarker Panels Tailored to Specific Therapeutics for Individualized Treatments": EP 2 229 589, issued June 10, 2015; US2017/0067877A9, pending. OncoSignature® is a Registered Trademark: US Req. No. 5,718,472; Int. Cl. 5, 42. Intl. Req. 1382289

ACR-368: A CLINICALLY ACTIVE PHASE 2 CHK1/2 INHIBITOR

- ATP-competitive inhibitor of CHK1 (0.9 nM) and CHK2 (8 nM)
- Good ADME properties, minimal drug-drug interaction (DDI) potential
- Discovered by Array Biopharma, acquired by Eli Lilly & Company
- CoM patent exp. Oct., 2030; Salt-form exp. Apr., 2037

ACR-368 (MW): 365.4

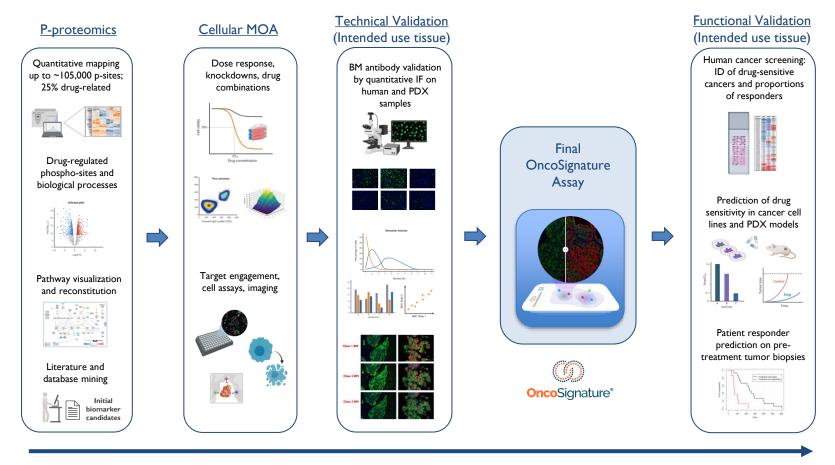
- **Durable monotherapy activity:** Platinum-resistant ovarian and squamous cell cancers (Anal and H&N)
- <u>Large safety database, favorable safety profile</u>: >1,000 patients treated (~50% mono, ~50% in combination)
- <u>Ideal for AP3 method</u>: Proven clinical activity, but requires patient responder identification to achieve sufficient ORR

CLINICAL OVERVIEW OF PAST LILLY-SPONSORED MULTI-CENTER ACR-368 MONOTHERAPY STUDIES

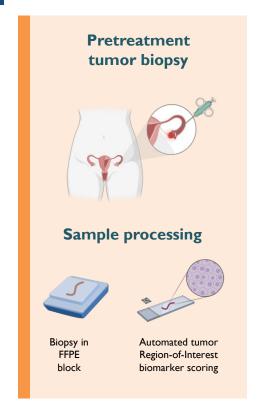
Indication	Trial	ORR# (confirmed)	Median DoR°	Reference
HGSOC* (BRCA wild type and mutant; platinum-resistant and refractory)	Phase 2 (46-center, 8-country study)	12.1% (platinum-resistant)	5.6 months	Konstantinopoulos et al; Gynec. Oncol.: 2022
Squamous cell cancer (anal cancer, head & neck cancer [H&N])	Phase 1b multi-center	19% HPV+ H&N 15% anal cancer	7 months (HPV+ H&N) 12 months anal cancer	Hong et al, CCR, 2018

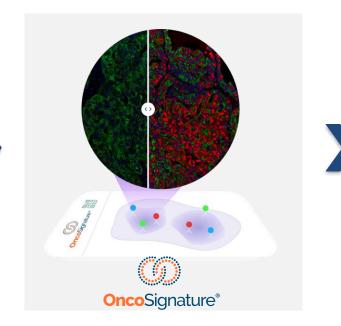
Dosing and Administration

IV q14d (RP2D = 105 mg/m²)

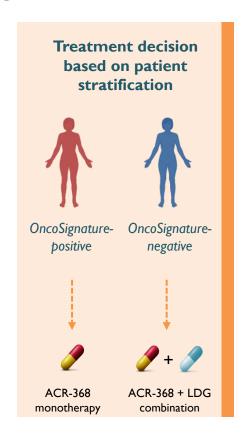

Safety summary

- Acceptable safety profile in >1,000 patients
 - No clinical or regulatory holds imposed across all clinical studies to date
- Primary adverse events ≥ grade 3 were hematological (manageable neutropenia and thrombocytopenia)
- Limited \geq grade 3 non-hematological toxicities (\leq 7% for all AEs)
- Drug-related discontinuations <1-2%

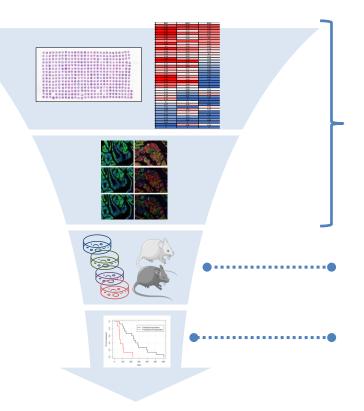

Despite significant efforts, no predictive biomarkers were identified, need for alternative biomarker approach


^{*}High grade serous ovarian cancer; # Overall response rate; *Duration of Response

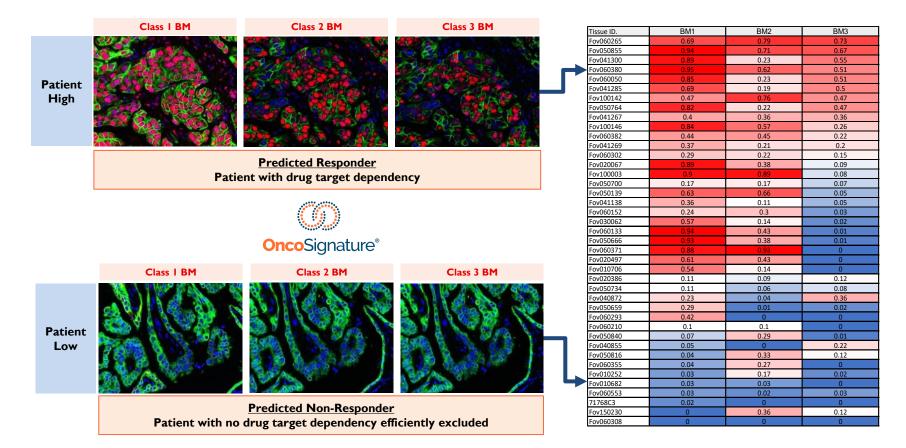
DEVELOPMENT OF AP3-BASED PATIENT SELECTION ONCOSIGNATURE TESTS

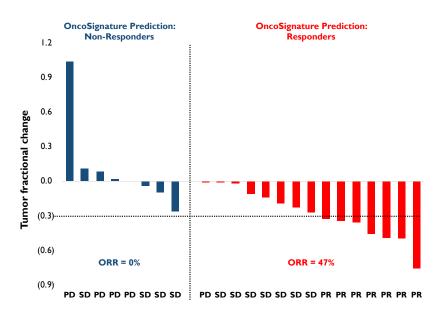


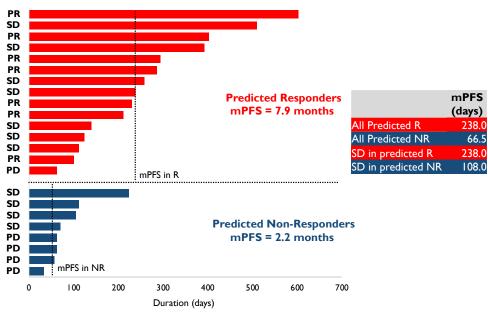
ACR-368 ONCOSIGNATURE TEST: USAGE IN THE CLINIC



- Pretreatment tumor biopsy test
- Compatible with 5 business days turn-around
- Offered by CDx partner under exclusive license from Acrivon

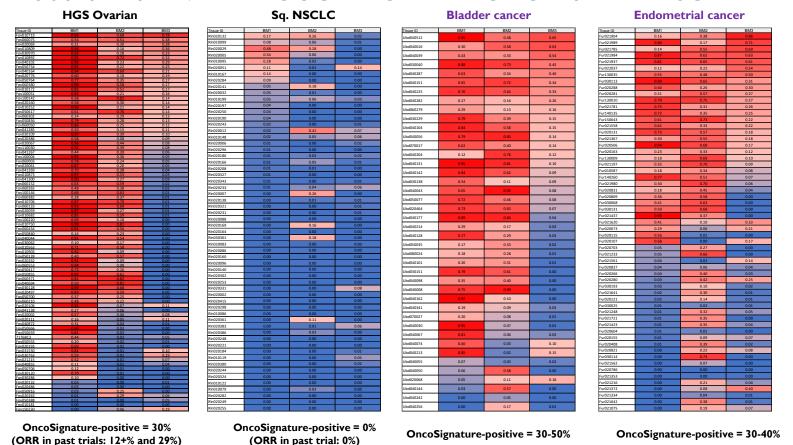

CONSISTENT ACR-368 ONCOSIGNATURE PERFORMANCE ACROSS PRECLINICAL STUDIES

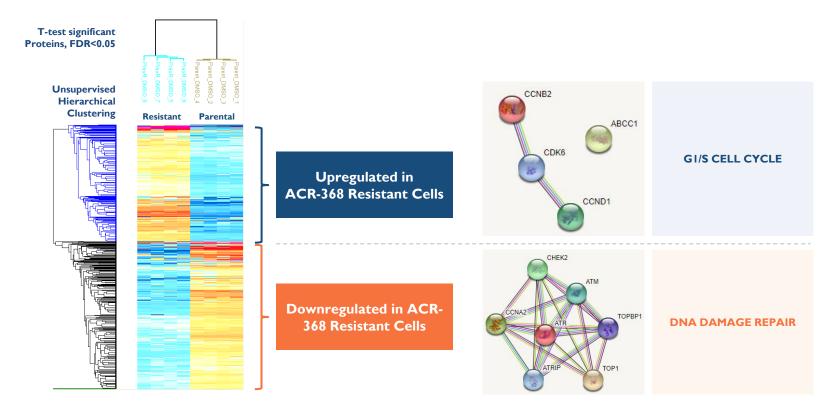

- Prediction of the fraction of human tumors sensitive to single agent ACR-368
 - Selection rate 30-40% across lead indications
- Identification of additional human tumor types predicted sensitive to single agent ACR-368
 - Endometrial and bladder cancer
- Prediction of treatment outcome in human PDX models
 - ORR enrichment to \geq 55%; AUC of 0.88 and 0.9
- Two separate, prospectively designed, blinded studies of biopsies from past Phase 2 trials with ACR-368 in patients with platinum-resistant ovarian cancer
 - ORR enrichment to 47% (NCI) and 58% (Lilly multi-center)


ACR-368 ONCOSIGNATURE PREDICTION OF DRUG SENSITIVITY: BIOMARKER QUANTITATION ACROSS HUMAN CANCER PATIENT SAMPLES

BIOPSY STUDY I: SUBSTANTIAL RESPONSE AND PFS BENEFIT IN PREDICTED RESPONDERS (BLINDED, PROSPECTIVELY DESIGNED STUDY)

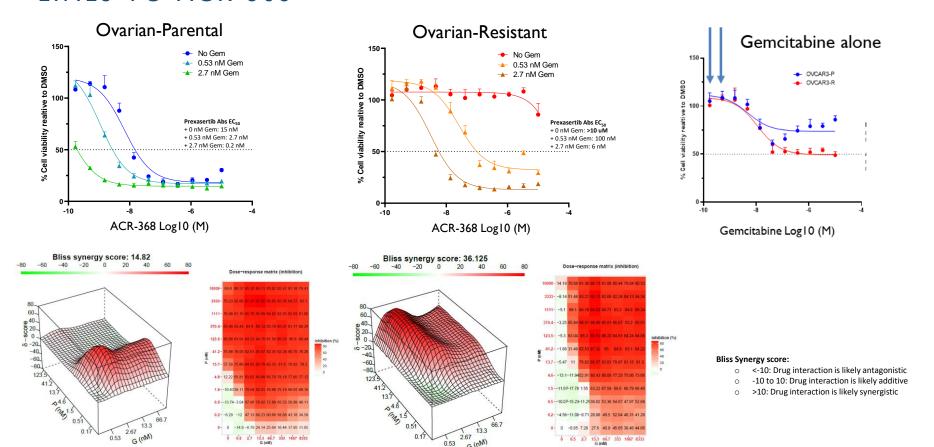
- Available pretreatment tumor biopsies from past phase 2 trials at NCI with ACR-368 in platinum-resistant ovarian cancer were obtained
- OncoSignature scores were generated blinded to treatment outcome at Acrivon and analyzed by 3rd party biostatistician in prospectively designed study





Result: ORR ~47%; mPFS = 7.9 months

TWO ADDITIONAL HIGH UNMET NEED SOLID CANCERS PREDICTED ACR-368-SENSITIVE THROUGH HUMAN TUMOR SAMPLE SCREENING



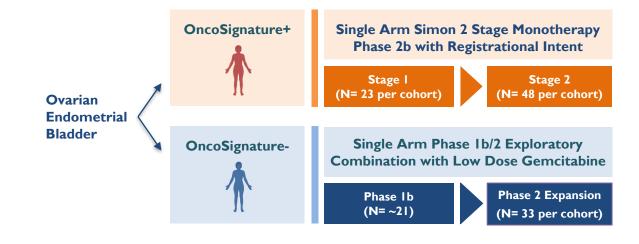
AP3 UNCOVERS ACTIONABLE ACR-368 RESISTANCE MECHANISMS UNBIASED AND INDEPENDENT OF GENETIC INFORMATION

Data suggest that gemcitabine might be a rational combination to overcome DDR suppression

LOW DOSE GEMCITABINE SENSITIZES OVARIAN CANCER CELL LINES TO ACR-368

THERAPEUTIC BAR FOR HIGH GRADE PLATINUM-RESISTANT OVARIAN AND ENDOMETRIAL CANCER NEW APPROVALS

- Platinum-resistant ovarian cancer: $\geq 2^{nd}$ line SOC* $\sim 12\%$ ORR, mDoR 3.7 5.7 months
 - Mirvetuximab: Post I-3 prior lines, FRa-high PROC (~35% of patients; ORR ~35%, PFS = 5.6 months)
 - ~85% of patients with PROC do not benefit from mirvetuximab
- High grade endometrial cancer: ≥3rd line SOC** ~9% ORR, mDoR 3.1 months
- ACR-368 clinical activity (without patient selection) in past platinum-resistant ovarian trials: ~12% ORR, mDoR >5.6 months
 - (BRCA-mutant and BRCA wild type patients regardless # lines of prior therapy; Lilly-sponsored 46-center, 8-country, N=169 patient study)^
- TPP high grade PROC: ≥25% ORR with CI lower bound >15%
- TPP high grade endometrial cancer: ≥20-25% ORR with CI lower bound >15%


^{*} Aurelia trial: Pujade-Lauraine E et al, ICO (2014); Corail trial: Gaillard S et al, ICO (2016)

^{**} Ray-Coquard I et al, BJC (2013)

[^] Konstantinopoulos P et al, Gyn Oncol. (2022)

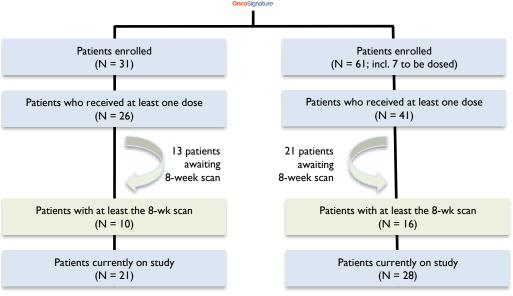
ENROLLING AND DOSING ACR-368 IN THREE HIGH UNMET NEED INDICATIONS: OVARIAN, ENDOMETRIAL AND BLADDER CANCER

- RP2D of ACR-368 based on predicted sensitivity using our ACR-368 OncoSignature Assay run by our CDx partner
- 68 sites activated¹
- Key opinion leaders, some with extensive experience using ACR-368 from previous trials are actively participating

- FDA <u>Fast Track Designation</u> granted May 8, 2023 for ACR-368 monotherapy in OncoSignature-positive patients with Platinum-Resistant Ovarian Cancer and Endometrial Cancer
- FDA <u>Breakthrough Device Designation</u> granted November 16, 2023 for ACR-368 OncoSignature Assay for the identification of ovarian cancer patients who may benefit from treatment with ACR-368

¹https://clinicaltrials.gov/ct2/show/NCT05548296

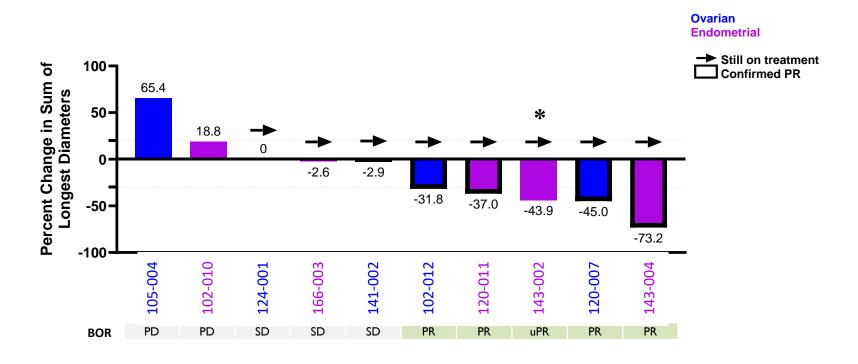
ACR-368-201 STATUS - OVARIAN AND ENDOMETRIAL (LOCKED ONCOSIGNATURE THRESHOLDS, PROSPECTIVE TRIAL)


OncoSignature-positive ACR-368 RP2D (105 mg/m²)

Registrational intent Phase 2

OncoSignature-negative ACR-368 RP2D (105 mg/m²) + ULDG RP2D (10 mg/m²)

Exploratory Phase IB/2



OncoSignature-positive rate =34%, consistent with predicted ~35% based on patient tumor sample OncoSignature screening prior to clinical trial

Data cut as of April 1, 2024

ONCOSIGNATURE+ GYN PATIENTS - TUMOR SHRINKAGE (LOCKED THRESHOLDS, PROSPECTIVE EVALUATION PER PROTOCOL)

BOR = Best overall response

Data cut as of April 1, 2024

*Since data cut off, the one unconfirmed PR has been confirmed bringing the total confirmed PRs to 5

ONCOSIGNATURE-POSITIVE PHASE 2 MONOTHERAPY GYN SUMMARY-PROSPECTIVE DATA WITH LOCKED THRESHOLDS

		Ovarian	Endometrial	Total
OncoSignaturo	PR (confirmed)	2	3	5
OncoSignature Positive (Arm 1)	SD	2	1	3
Positive (Arm 1)	PD	1	1	2
	Total	5	5	10
	ORR	40%	60%	50%

-Ovarian: The 95% CI[^] for ORR = (12%, 77%). For reference, ovarian SOC ~12%.

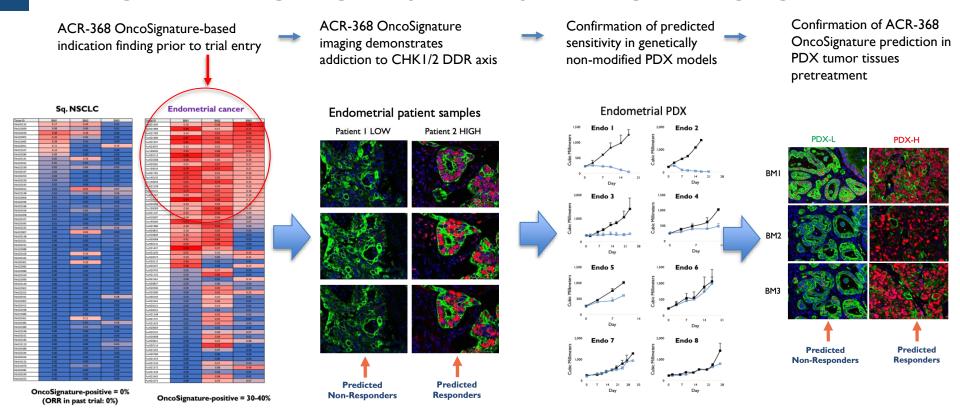
-Endometrial: The 95% CI^ for ORR = (23%, 88%). For reference, endometrial SOC ~ 9%

All 5 confirmed responders on treatment; median DoR not reached

^ Agresti-Coull

ACR-368 ONCOSIGNATURE PROSPECTIVELY PREDICTS SENSITIVITY TO MONOTHERAPY IN ONGOING PHASE 2 TRIAL

ORR	BM+ (ARM I) ACR-368 monotherapy	BM- (ARM 2) ACR-368 + ULDG	Patients (N)
Ovarian	40% (2/5)	0% (0/11)	16
Endometrial	60% (3/5)	0% (0/5)	10
Combined	50% (5/10)	0% (0/16)	26


P value (confirmed PRs) = 0.0038

Notes:

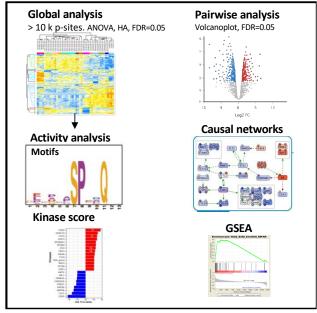
- (non-parametric bootstrap simulation and Fisher test BM+ vs BM-)
- ORR in ovarian all-comer = 12.5%, which is consistent with |T|N study (12%)

Data cut as of April 1, 2024

ENDOMETRIAL CANCER IS AN AP3-PREDICTED TUMOR TYPE

in >1,000 cancer patients treated with ACR-368 in Lilly-sponsored trials, endometrial cancer was not tested

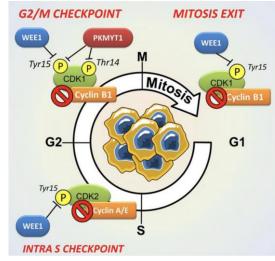
INTERNAL PIPELINE: ADVANCING DEVELOPMENT CANDIDATE ACR-2316 AND OTHER PROGRAMS - LEVERAGING AP3


ACR-2316 and **DDR** programs

- >40 high resolution co-crystals (1.5-3.1 Å) and novel WEE1- and PKMYT1selective structural series and lead candidates
- ACR-2316 a novel, potent, selective dual inhibitor
- Designed by AP3 to overcome WEEI and PKMYTI single inhibitor resistance
- IND target date Q3 2024 and trial initiation Q4 2024

Cell cycle inhibitor program with undisclosed target

Anticipated development candidate 2025


High throughput AP3 profiling

AP3 used for biologically relevant selectivity profiling

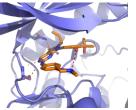
WEEL AND PKMYTL ARE ATTRACTIVE CANCER TARGETS: IDEAL FOR AP3 APPROACH

- WEEI and PKMYTI regulate S and G2-M cell cycle checkpoints to ensure proper DNA replication and mitotic completion
- Defective DNA repair is highly prevalent in cancers, creating a dependency on checkpoint proteins
- WEEI inhibition propagates genomic instability by premature DNA replication and cell cycle progression
- PKMYT1 inhibition results in premature mitotic entry

Ghelli Luserna di Rorà et al. J. Hematol Oncol, 2020

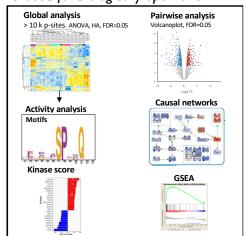
- Several WEE1 inhibitors and a PKMYT1 inhibitor have demonstrated anti-tumor activity in clinical trials across solid tumor types
- Current clinical agents challenged by lack of predictive biomarkers and narrow therapeutic index, limiting safety and efficacy

ACR-2316 -UNIQUELY ENABLED BY AP3 TO OVERCOME LIMITATIONS OF CURRENT WEEL AND PKMYTI INHIBITORS


Program goals:

- Superior single agent activity (AP3)
 - AP3-guided design to overcome WEE1 and PKMYT1 single inhibitor resistance through balanced dual inhibition
- High selectivity and potency (co-crystallography)
 - Structure-guided design to limit adverse events (AEs) to be on-target, transient, mechanism-based
- **Streamlined clinical development (ACR-2316 OncoSignature)**
 - To identify/prioritize sensitive indications prior to clinical start and for drug target engagement-based dose optimization

ACR-2316: Rationally designed WEEI/PKMYT1 development candidate


- 5-20-fold more potent in preclinical models than clinical benchmarks
- Superior anti-tumor efficacy with complete tumor regression across models
- High selectivity ensures transient, short-lived, mild AEs
- Potent WEEI inhibition, balanced PKMYTI inhibition, overcomes resistance

Co-crystallography for drug design and selectivity

Zhu et al, J. Med. Chem. (2017)

AP3 used for biologically optimal SAR

ACR-2316 IS A POTENTIALLY BEST-IN-CLASS AGENT RATIONALLY DESIGNED USING ACRIVON'S AP3 PLATFORM

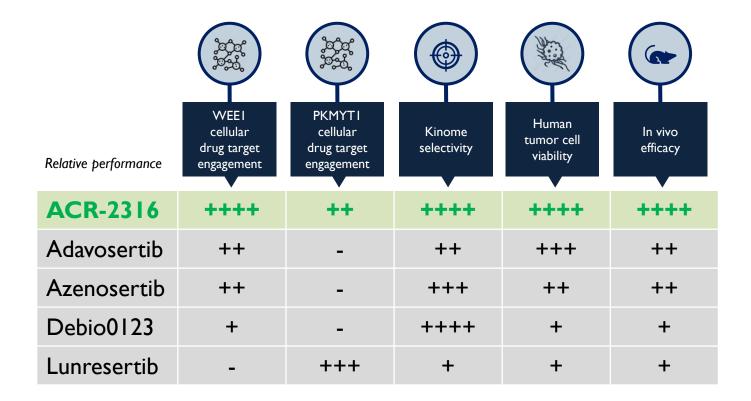
AP3-Enabled

SAR

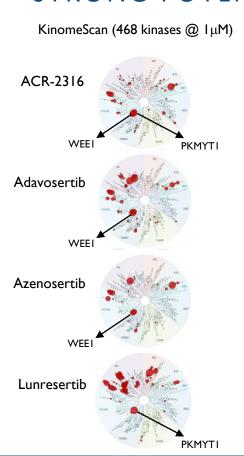
Program Goals

Demonstrated Preclinical Results

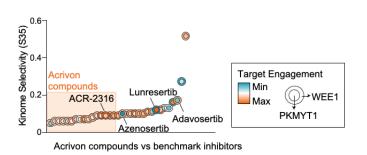
Superior single agent activity

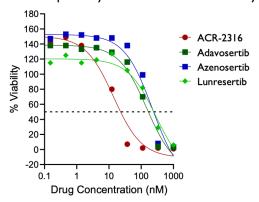

- High selectivity and potency
- Favorable safety profile

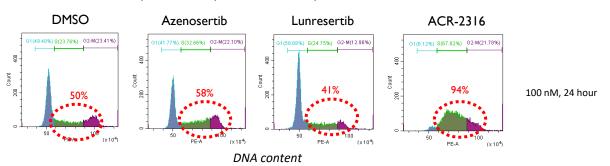
Streamlined clinical development

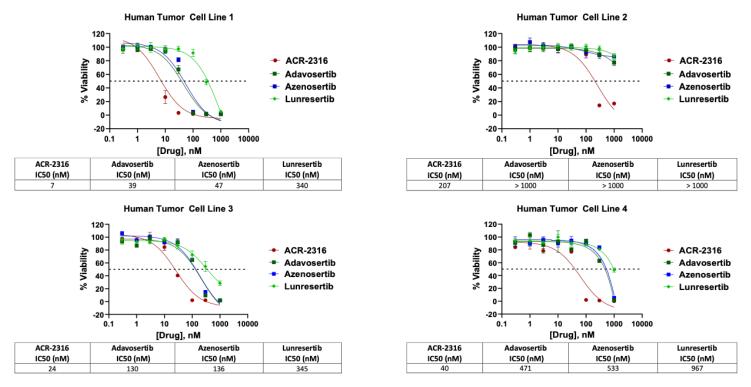

- Superior* single agent anti-tumor activity through robust CDK1, CDK2, and PLK1 activation and elimination of dominant resistance mechanisms through balanced WEEI and PKMYTI inhibition
- 5-20-fold more potent* in preclinical models than clinical benchmarks
- High selectivity results in adverse events limited to transient, short-lived, mechanism-based, reversible
- Broad preclinical therapeutic index and antitumor activity across dosing regimens
- AP3-based identification of PD biomarkers and prioritization of promising indications

*Head-to-head preclinical studies against benchmarks with clinical data


ACR-2316 SHOWS ATTRACTIVE PROFILE IN ONGOING PRECLINICAL STUDIES

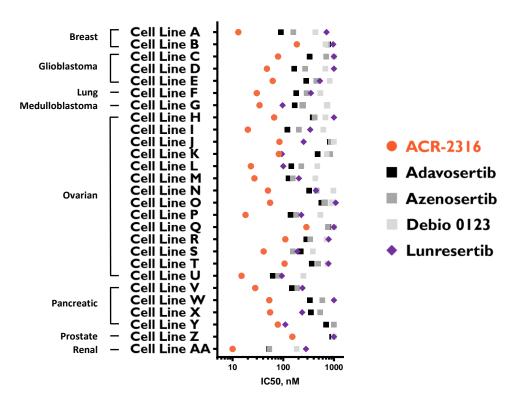

DUAL WEEI/PKMYTI INHIBITOR ACR-2316 DEMONSTRATES STRONG POTENCY AND SELECTIVITY


ACR-2316 is highly selective (KinomeScan)


ACR-2316 potently inhibits cancer cell viability

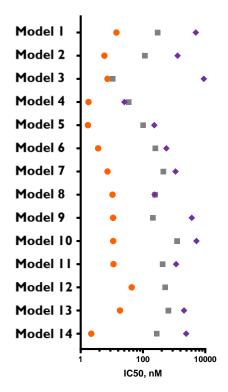
ACR-2316 exerts potent cell cycle effects with pronounced S-G2/M accumulation

ACR-2316 SHOWS SUPERIOR ACTIVITY VS BENCHMARKS ACROSS ALL HUMAN TUMOR CELL LINES TESTED

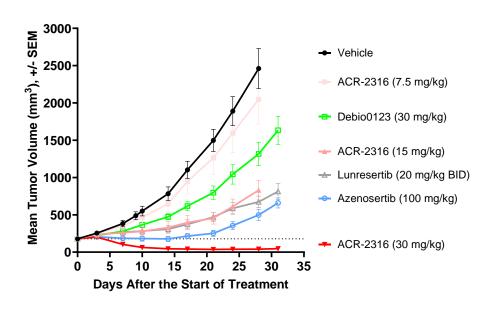


Example: Ovarian human cancer cell lines

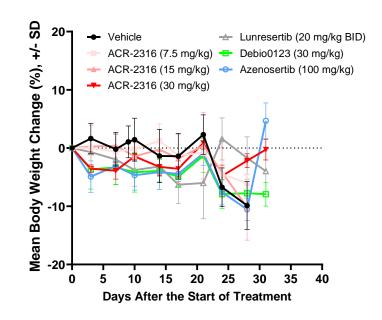
19 ovarian and other human tumor cell lines tested to date


ACR-2316 IS HIGHLY POTENT ACROSS HUMAN TUMOR CELL LINES AND PATIENT-DERIVED EX VIVO TUMOR MODELS

Human tumor cell lines

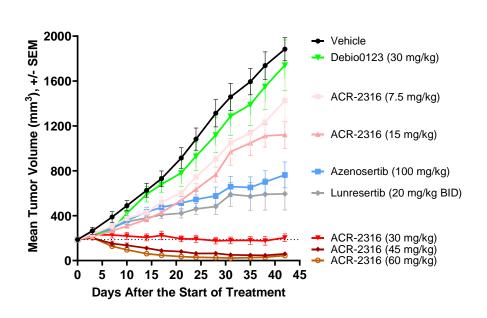

34

Patient-derived ex vivo tumor models

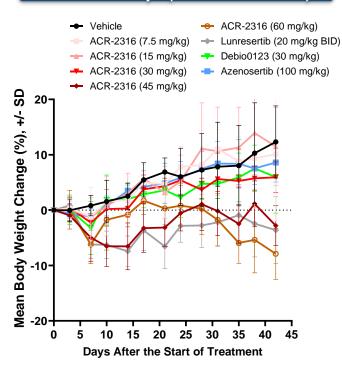


ACR-2316 SHOWS POTENT ANTI-TUMOR ACTIVITY COMPARED TO CLINICAL WEEL OR PKMYTI INHIBITORS – MODEL I

Efficacy (5d on/2d off)

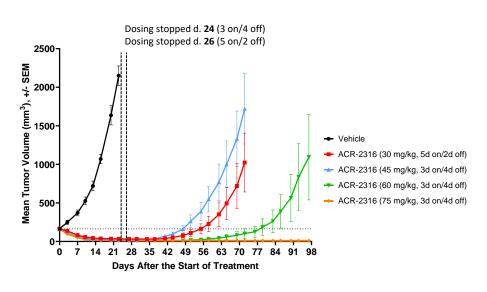


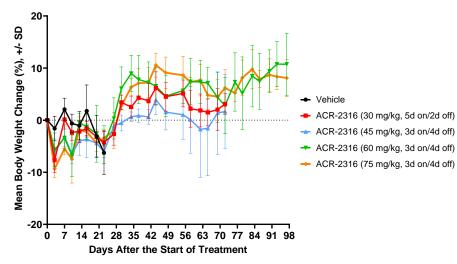
Tolerability (5d on/2d off)



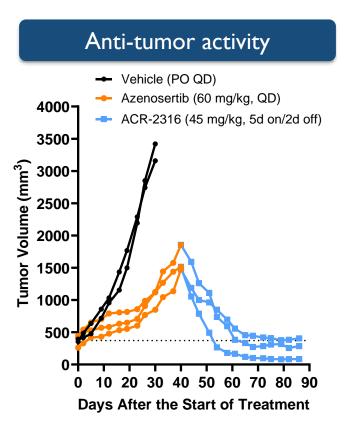
ACR-2316 SHOWS POTENT ANTI-TUMOR ACTIVITY COMPARED TO CLINICAL WEEL OR PKMYTI INHIBITORS - MODEL 2

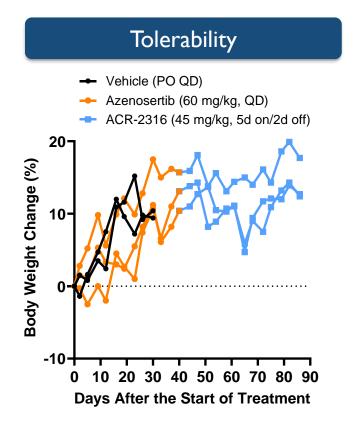
Efficacy (5d on/2d off)

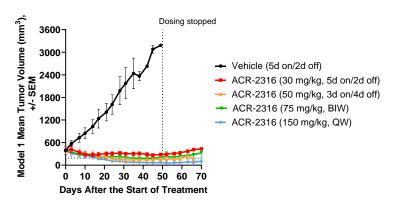

Tolerability (5d on/2d off)

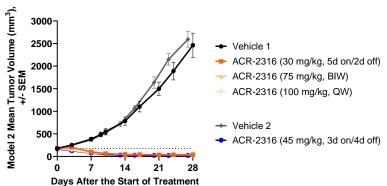


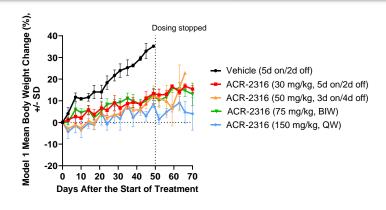
ACR-2316 LEADS TO POTENT AND DURABLE TUMOR REGRESSION

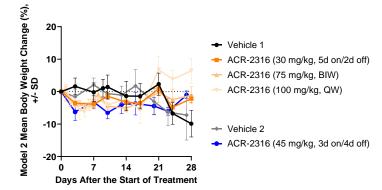

Efficacy

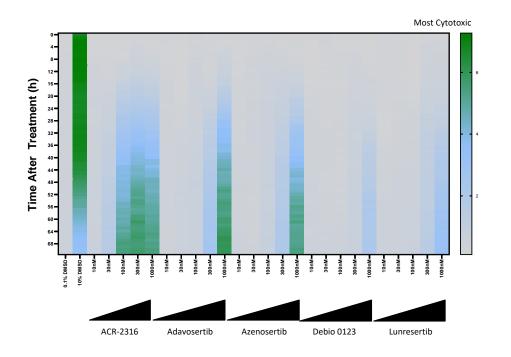

Tolerability

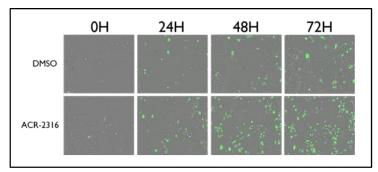

ACR-2316 SHOWS DEEP REGRESSION IN TUMORS PROGRESSING ON A BENCHMARK WEEL INHIBITOR



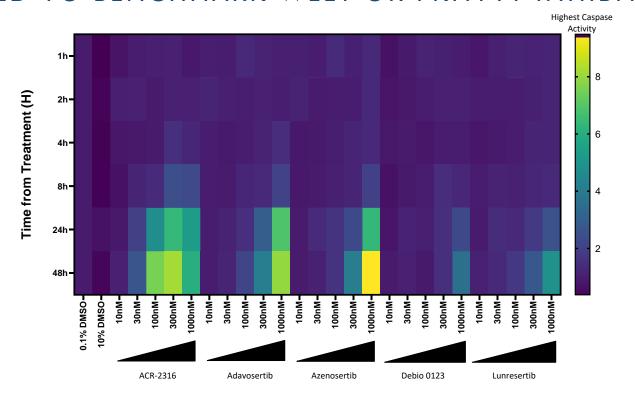

STRONG ACR-2316 EFFICACY DEMONSTRATED ACROSS BROAD RANGE OF DOSING REGIMENS AND MODELS


Efficacy




Tolerability

ACR-2316 INDUCES POTENT CELL DEATH COMPARED TO BENCHMARK WEEL AND PKMYTI INHIBITORS



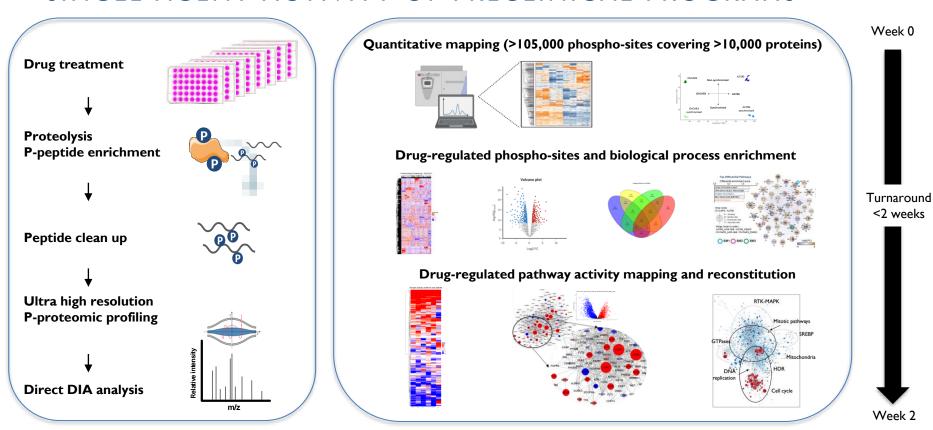
Representative images of OVCAR3 cells treated with 0.1% DMSO or 100 nM ACR-2316 (green fluorescence = dead cells)

CellTox-Green Assay

ACR-2316 INDUCES POTENT CASPASE 3/7 CLEAVAGE COMPARED TO BENCHMARK WEEL OR PKMYTI INHIBITORS

Caspase 3/7-Glo Assay (OVCAR3 Cells)

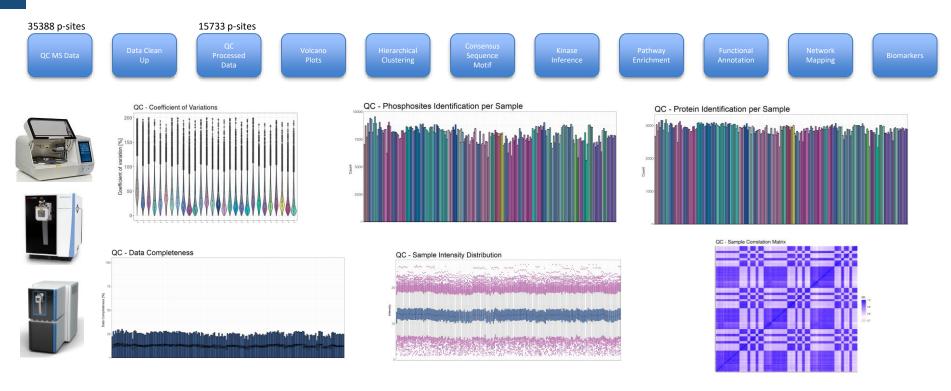
ACR-2316 - FAVORABLE PRECLINICAL SAFETY PROFILE


Mice:

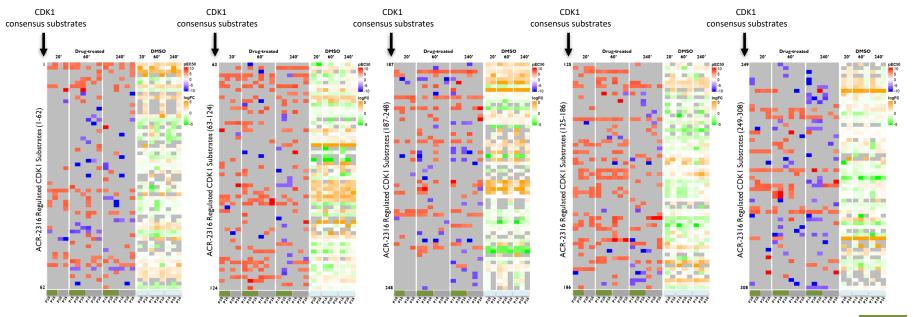
- ACR-2316 is well-tolerated, resulting in tumor regression in xenograft mouse models at multiple dosing regimens (qw, 2qw, 3d on/4d off, 5d on/2d off, and qd)
- Transient, reversible, mechanism-based hematological adverse events

Rat and dog MTD, DRF, and GLP tox studies:

- $MTD \ge 30 \text{ mg/kg in both species (single dose)}$
- GLP tox studies (31 days) completed in rat and dog with the planned human dosing regimen achieving exposure required for tumor regression
- Minimal hematological effects in rats, except for mechanism-based transient, fully reversible reticulocytopenia between dosing cycles
- Mechanism-based, reversible food/GI effect in dogs, not impeding weight gain


STREAMLINED AP3-BASED BIOLOGICAL SAR OPTIMIZATION FOR SINGLE AGENT ACTIVITY OF PRECLINICAL PROGRAMS

High resolution and throughput MS-based P-proteomics

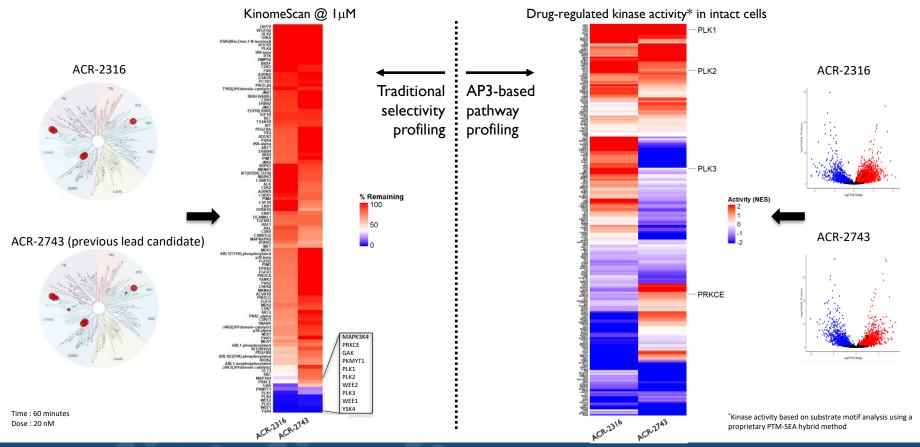

Proprietary pipe for automated AP3 analyses with actionable results

AP3: TIGHT, HIGH-RESOLUTION DATA WITH DEEP COVERAGE

- Acrivon proprietary compound data (~50 million data points per experiment); dozens of compounds profiled
- Miniaturized, high throughput, scalable: <2 weeks turn-around, automated AI computational analyses in I day
- Actionable results: Resistance mechanisms, rational combinations, drug-tailored OncoSignature patient selection

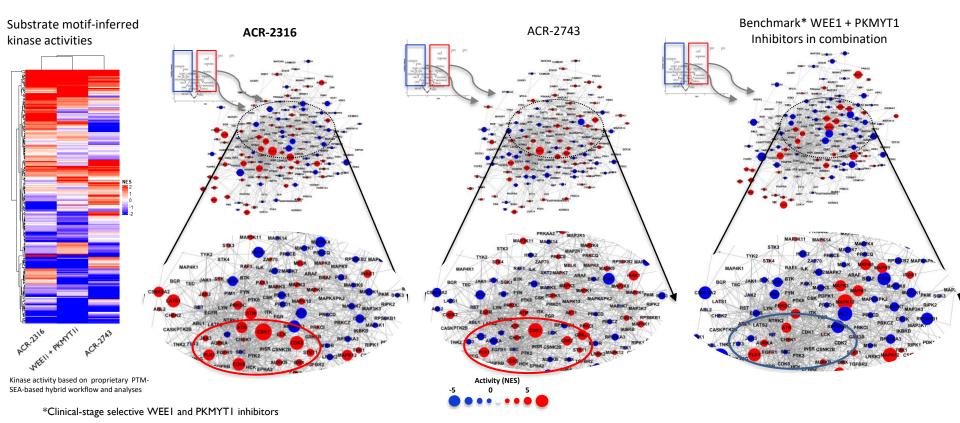
ACR-2316 RESULTS IN STRONG ACTIVATION OF CDK1 ACROSS CELL LINES

Sens.

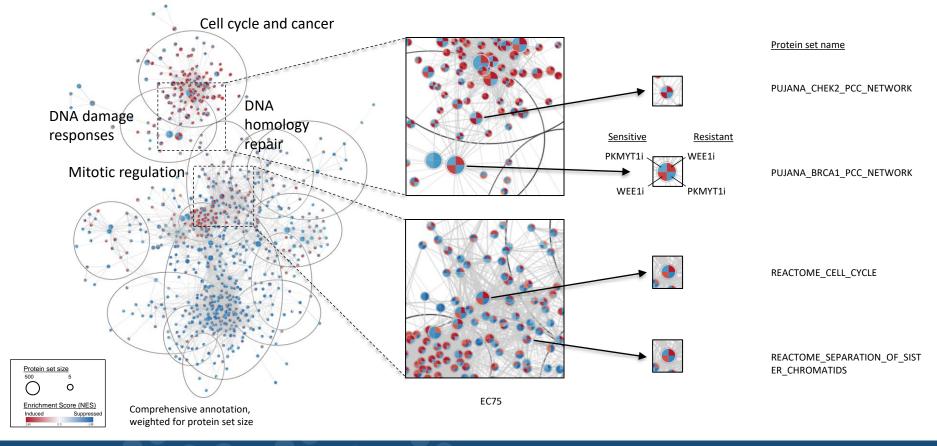

Res.

• Unbiased quantitation of ACR-2316-regulated CDK1 substrate p-sites (308) in intact cells based on CDK1 consensus recognition motif (Acrivon proprietary hybrid database approach) across multiple experiments

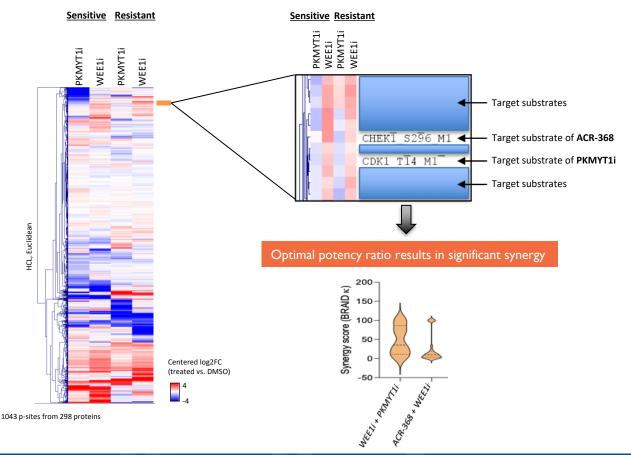
DMSO

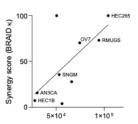

Actionable insight into drivers of mitotic catastrophe and on-target CDK1-driven pathways

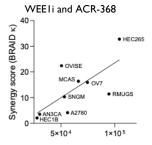
AP3 REVEALS DRUG-REGULATED KINASE ACTIVITY IN INTACT CELLS NOT DETECTABLE BY STANDARD METHODS



OPTIMIZED DUAL INHIBITORS SHOW DESIRABLE PATHWAY **EFFECTS**


Optimized dual WEE1 and PKMYT1 inhibitors affect cell cycle and canonical MAPK pathways in desirable manner


AP3-DERIVED DUAL POTENCY OPTIMIZATION TO OVERCOME WEEL INHIBITOR RESISTANCE: RECIPROCAL QUENCHING


AP3 RECIPROCAL QUENCHING REVEALS OPTIMAL TARGET POTENCY PROFILE FOR DUAL WEEI/PKMYTI INHIBITOR

WEE1 inhibitor sensitivity (Mean AUC) Pearson r = 0.68 p value = 0.0459

WEE1 inhibitor sensitivity (Mean AUC) Pearson r = 0.71

p value = 0.0324

EXPEDITING ACR-2316 TOWARDS CLINICAL MONOTHERAPY DEVELOPMENT

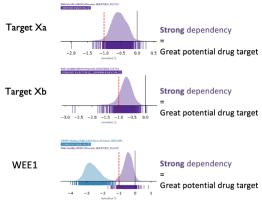
A novel, AP3-enabled, internally discovered dual WEE1 / PKMYT1 inhibitor

Superior Profile

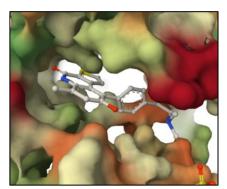
Rational Design

Streamlined Development

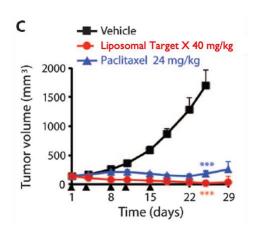
Optimized via AP3


50

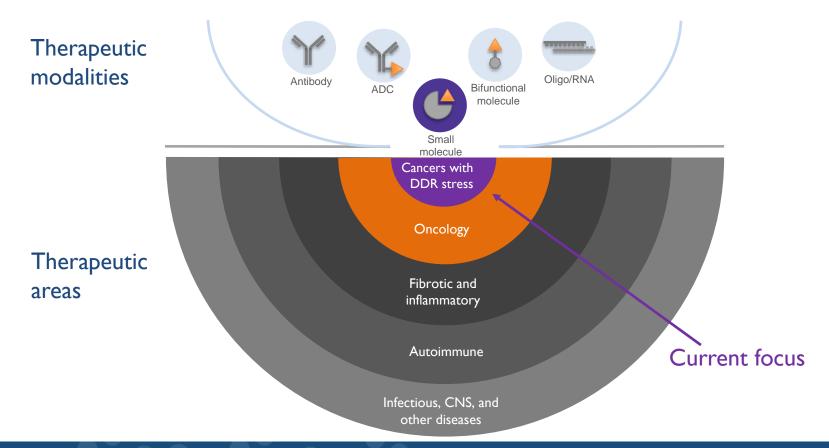
- AP3-enabled design for optimized single agent activity
- Potent anti-tumor activity across human tumor cell lines and in tumor-bearing mice vs benchmarks
- Rapidly advancing towards IND in Q3 2024, aiming for monotherapy development
- OncoSignature development for indication finding
- Dose optimization to be guided by drug target engagement (BM2)



CELL CYCLE REGULATORY PIPELINE PROGRAM (UNDISCLOSED TARGET)


- Target X an exciting cancer drug target, no/minimal competitor programs, perfectly suited for AP3 platform
- DepMap data suggest suggest target X is an essential gene for cancer cell viability
- Strong mechanistic target rationale for role in oncogenesis
- Highly selective tool compound shows strong anti-tumor efficacy in rodent models
- Tool compound AP3 profiling supports selectivity
- New preclinical program leveraging co-crystallography and AP3 infrastructure successfully built for ACR-2316

Genetic dependency analysis across CCLE (n > 700)



Tool compound is a selective target X inhibitor (originally believed to be inhibitor for another target)

Development candidate 2025

THE AP3 APPROACH IS MODALITY AND DISEASE AGNOSTIC

FINANCIAL HIGHLIGHTS

Cash and marketable securities

\$220.4M

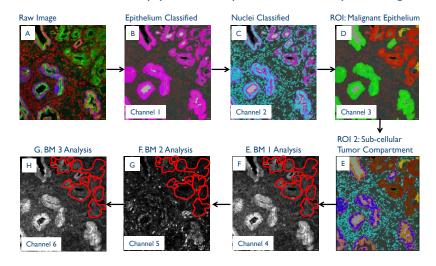
Balance sheet 30-June-2024

Projected runway into

H2'26

Current operating plan, assuming no additional financing

Fully Diluted Shares Outstanding


43.9M

Including shares, pre-funded warrants and equity grants outstanding 30-June-2024

APPENDIX

TEAM HAS PIONEERED OUTCOME-PREDICTIVE QUANTITATIVE PROTEOMIC MULTIPLEX IN SITU TEST

Prostate cancer 8-marker biopsy test developed and launched by Founding team

- <u>ProMark®</u>: Marketed, automated *in situ* proteomic test for human outcome prediction included under NCCN guidelines
- Founding team: Has pioneered p-proteomics and quantitative multiplex imaging including double-blinded clinical validation*

Ideal test	Protein multiplex in situ test	Current CDx tests
Quantitative and automated	✓	(√)
Validated Abs and reagents	✓	(√)
Drug target and pathway activation context	✓	
Biomarkers measured in relevant region on tumor biopsy	✓	
Imaging algorithm (tissue pattern)	✓	
Addresses tumor heterogeneity	✓	
Double-blinded, prospective validation	✓	(√)

^{*}Blume-Jensen et al: Development and clinical validation of an *in situ* biopsy-based multimarker assay for risk stratification in prostate cancer. Clinical Cancer Research (2015)

PROOF-OF-CONCEPT FOR PROTEIN BIOMARKER SIGNATURE: MARKETED, OUTCOME-PREDICTIVE MULTIPLEX CANCER TEST

Biology of Human Tumors

Clinical Cancer Research

Development and Clinical Validation of an In Situ **Biopsy-Based Multimarker Assay for Risk** Stratification in Prostate Cancer R

(2015)

Peter Blume-Jensen¹, David M. Berman², David L. Rimm³, Michail Shipitsin¹, Mathew Putzi⁴, Thomas P. Nifong¹, Clayton Small¹, Sibgat Choudhury¹, Teresa Capela¹, Louis Coupal⁵, Christina Ernst¹, Aeron Hurley¹, Alex Kaprelyants¹, Hua Chang¹, Eldar Giladi¹, Julie Nardone¹, James Dunyak¹, Massimo Loda⁶, Eric A. Klein⁷, Cristina Magi-Galluzzi⁸, Mathieu Latour⁹, Jonathan I. Epstein¹⁰, Philip Kantoff⁶, and Fred Saad⁹

- Third-party blinded clinical validation, bioinformatic analysis (U. Montreal)
- Validation of locked ProMark[™] test on single institution biopsy cases (N=274)
- Secondary validation on multi-center biopsy cohort (N=359) for clinical use indication
- Marketed test included under NCCN Guidelines and Medicare coverage

PIONEERING PHOSPHO-PROTEOMICS STUDY IDENTIFIES NOVEL PI3'K PATHWAY INHIBITOR BIOMARKERS

RESEARCH ARTICLE

CANCER DRUG DEVELOPMENT

Sci Transl Med **2:** 1-14 (2010)

Pathway-Based Identification of Biomarkers for Targeted Therapeutics: Personalized Oncology with PI3K Pathway Inhibitors

Jannik N. Andersen, 1* Sriram Sathyanarayanan, 1* Alessandra Di Bacco, 1 An Chi, 1 Theresa Zhang, 1 Albert H. Chen,¹ Brian Dolinski,¹ Manfred Kraus,¹ Brian Roberts,¹ William Arthur,² Rich A. Klinghoffer,^{1†} Diana Gargano,^{1‡} Lixia Li,¹ Igor Feldman,¹ Bethany Lynch,¹ John Rush,³ Ronald C. Hendrickson,^{4§} Peter Blume-Jensen,^{1§||} Cloud P. Paweletz¹

Editorial Highlights:

VOLUME 28 NUMBER 10 OCTOBER 2010 NATURE BIOTECHNOLOGY

Tracing cancer networks with phosphoproteomics

David B Solit & Ingo K Mellinghoff

A mass-spectrometry approach for identifying downstream events in cancer signaling pathways may help to tailor therapies to individual patients.

TOWARD CUSTOMIZING TUMOR TREATMENT

Just as our view of Earth has become increasingly global, cells are now seen as complex networks of interacting and intersecting signaling pathways rather than a collection of regulated genes.

Nature Reviews Cancer | AOP, published online 19 August 2010; doi:10.1038/nrc2922

A discovery strategy for novel cancer biomarkers

OLSEN LAB-EXAMPLES OF DEEP PROTEOMICS DRUG PROFILING

Science Signaling (2018)

ALK-i: LDK378, TAE684, crizotinib, lorlatinib,

SCIENCE SIGNALING | RESEARCH RESOURCE

Integrated proximal proteomics reveals IRS2 as a determinant of cell survival in ALK-driven neuroblastoma

Kristina B. Emdal^{1,2}s, Anna-Kathrine Pedersen¹s, Dorte B. Bekker-Jensen¹, Alicia Lundby^{1,3} Shana Claeys⁴, Katleen De Preter⁴, Frank Speleman⁴, Chiara Francavilla^{1,5†‡}, Jesper V. Olsen^{1†‡}

Cell Reports (2018) SHP2-i: SHP099 -allosteric inhibitor.

Large-Scale Phosphoproteomics Reveals Shp-2 Phosphatase-Dependent Regulators of Pdqf Receptor Signaling

Tanveer S. Batth, ^{1,4} Moreno Papetti, ^{1,8} Anamarija Pleiffer, ¹ Maxim A.X. Tollenaere, ² Chiara Francavilla, ^{1,3} and Jesper V. Olson ^{1,3,4}

**Tretacenics Program, Novo Nordak Foundation Center for Protein Research, Faculty of Health and Medical Science, University of Copenhagen, Begdamovej 38, 2200 Copenhagen, Denmark *Cellular Stress Signaling Group, Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, 2200 School of Biological Sciences, FBMH, University of Manchester, Oxford Road, Manchester M13 SPT, UK

*Correspondence: chiara francavita@marchester.ac.uk (C.F.), jesper chiardicpr.ku.ck (LV.O.) https://doi.org/10.1016/j.celep.2016.02.038

Cell Reports (2017) CHK1-i: SCH900776. ATM-i: KU55933

Proteomics Reveals Global Regulation of Protein SUMOvlation by ATM

and ATR Kinases during Replication Stress

Stephanie Munk, *** Jón Otti Sigurðsson, ** Zhernyu Xiao, ** Tanveer Singh Batth, * Giulia Franciosa, *
Louise von Stechow, * Andres Joaquín Lopez-Contreras, * Affred Cornelis Otto Vertegaal, ** and Jesper Volgaard Otse Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
"Center for Chromosome Statistity and Center for Healthy Aging, Institute for Cellular and Molecular Medicine, Faculty of Health and Medica.

Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.

"Department of Molecular Cell Biology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands

"Correspondence: a.c.o. vertegas/Blunc.nl (A.C.O.V.), jenger: obserelliopr.ku.clk (J.V.O.). https://dxia.ceg/10.1016/j.celess.2017.08.068

Cell Reports (2017) CDK7-i: THZ-1

Phosphoproteomics of Primary Cells Reveals **Druggable Kinase Signatures in Ovarian Cancer**

Chiara Francavilla, 1,4,7,1 Michela Lupia, 2,8 Kalliopi Tsafou, 3,4,4 Alessandra Villa, 3,8 Katarzyna Kowalczyk Rosa Rakownikow Jersie-Christensen, ¹ Giovanni Bertalot, ¹ Stefano Confatonieri, ¹ Seren Brunak, ¹ Lars J. Jensen, ¹ Ugo Cavallare, ^{1,1} and Jesper V. Olsen ^{1,1} "Proteinsen Program, Nevo Niciala Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of

Coperhagen, (flegdamovsi 38, 2200 Coperhagen, Denmark Init of Gynecological Oncology Research, Program of Gynecological Oncology, European Institute of Oncology, Via Ripamonti 426, 2014 Mean, may Titlescare Busteres Biotony Program, Nison Navelisk Foundation Contact for Protein Research, Faculty of Health and Minford Sciences

*Chanaca Systems concept "Program, read ordinar reconstance unders of Protein Institute," in Institute, and ordinar standard collection (Institute, and Institute, and Inst Marchester, Marchester M13 9PL UK

No ens. author
Present address: Division of Molecular and Cellular Functions, School of Biological Sciences, Faculty of Biology, Medicine and Health, the University of Marichester, Manchester M13 9PL, UK
"Present address: Department of Oncology, Lendard-Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
"Present address: Philochem AC, Defininges, Switzerland

nge: chiana francavilla@manchester.ac.uk (C.F.), ugo.cavallaro@ieo.it (U.C.), jasper.obare@cpr.ku.dk (U.V.O.)

Cell Systems (2017)

Deepest proteome resolution of a human cell to date

An Optimized Shotgun Strategy for the Rapid Generation of Comprehensive Human Proteomes

Dorte B. Bekker-Jensen, ^{1,4} Christian D. Kelstrup, ^{1,4} * Tanveer S. Batth, † Sara C. Larsen, † Christa Haldrup, ² Jesper B. Bramsen, * Karina D. Sørensen, * Søren Høyer, * Torben F. Orntoft, * Claus L. Andersen, * Michael L. Nielsen, and Josper V. Olsen 1-10" Proteomics Program, Faculty of Health and Medical Sciences, Novo Nordsk Foundation Center for Protein Research, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark

Departments of Molecular Medicine and Clinical Medicine, Aerhus University Hospital, Aerhus University. Palle Juui-Jensens Boulevard 99 Sostitute of Pathology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200 Aarhus, Denmar

"Correspondence: christian keistrup@cpr.ku.dk (C.D.K.), iesper.elsen@cpr.ku.dk (UV.O.) http://dx.doi.org/10.1016/j.cels.2017.05.009

Cell (2019)

Functional mapping of differential signaling by RPTK mutants

Oncogenic Mutations Rewire Signaling Pathways by Switching Protein Recruitment

to Phosphotyrosine Sites

Alicia Lundby, 1,3,4 Giulia Franciosa, 1 Kristina B. Emdal, 1 Jan C. Refsquard, 1 Sebastian P. Gnosa, 3 Dorte B. Bekker-Jensen, "Anna Secher," Svetlana R. Maurya, "Indranil Paul, "Blanca L. Mendez," Christian D. Kelstrup, " Chiara Françavilla," Marie Kveiborg, "Guillermo Montova, "Lars J. Jensen," and Jesper V. Olsen 1-5." Vision Nordick Foundation Center for Protein Research, University of Copenhagen, Faculty of Health and Medical Sciences, Blegdamsvej 3b, DK-2200 Copenhagen, Denmark

*Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
*Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2000 Copenhagen Novo Nordisk A/S, Novo Nordisk Park, DK-2760 Masloev, Denmark

*Lead Contact *Correspondence: alicia.lundby@sund.ku.dk (A.L.), jesper.olsen@cpr.ku.dk (J.V.O.)

Nature Communications (2020)

Highest throughput, sensitivity, and scalability to date

Rapid and site-specific deep phosphoproteome profiling by data-independent acquisition without the need for spectral libraries

Dorte B. Bekker-Jensen 61, Oliver M. Bernhardt2, Alexander Hogrebe 61, Ana Martinez-Val 61, Lynn Verbeke2, Tejas Gandhi 2. Christian D. Kelstrup 1. Lukas Reiter 2 & Jesper V. Olsen 1.

Nature Communications (2021)

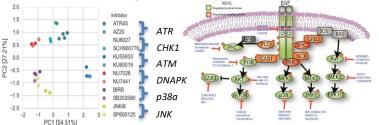
Subcellular compartmental proteomics

Check for update

Check for update

Spatial-proteomics reveals phospho-signaling dynamics at subcellular resolution

Ana Martinez-Valo 1, Dorte B. Bekker-Jensen 1,2, Sophia Steigerwald 1,3, Claire Koenig 1, Ole Østergaard 1, Adi Mehta⁴, Trung Tran⁴, Krzysztof Sikorski⁴, Estefanía Torres-Vega⁶, Ewa Kwasniewicz⁶, Sólveig Hlín Brynjólfsdóttir⁷, Lisa B. Frankel^{7,8,9}, Rasmus Kjøbsted¹⁰, Nicolai Krogh¹¹, Alicia Lundby^{1,5} Simon Bekker-Jensen 6, Fridtjof Lund-Johansen 6 452 & Jesper V. Olsen 6 15


Nature Communications (2021)

Clinically actionable resistance mechanisms ARTICLE

Proteomics of resistance to Notch1 inhibition in acute lymphoblastic leukemia reveals targetable kinase signatures

Giulia Franciosa 1, Jos G. A. Smits 12, Sonia Minuzzo Ana Martinez-Val 1, Stefano Indraccolo 34 &

ONGOING (MULTICENTER): Profiling of DDR and core kinase pathway inhibitors (>45)

ADVISORS AND COLLABORATORS

SAB

George Demetri, M.D., FACP, FASCO, FAACR Professor, Harvard Med. School, Dir. Dana-Farber Cancer Institute & Ludwig Center, Boston

- Leader in Precision Oncology
- Key contributor to development and rapid approvals of Gleevec, Sutent, Stivarga, Zelboraf, Votrient, and Yondelis

Robert Abraham, Ph.D. EVP, Head Cancer Biology, **Odyssey Therapeutics** Adj. Prof., Burnham Inst. Adj. Prof. UCSD

- · Expert in signal transductionbased R&D
- · Previously SVP and WW Head, Oncology R&D, Pfizer
- VP, Oncology Res., Wyeth
- · Professor, Burnham Institute
- Professor, Duke University

Timothy Yap, M.B.B.S., Ph.D., F.R.C.P.

Associate Prof., MD Anderson Cancer Center, Medical Director, Inst. for **Applied Cancer Science**

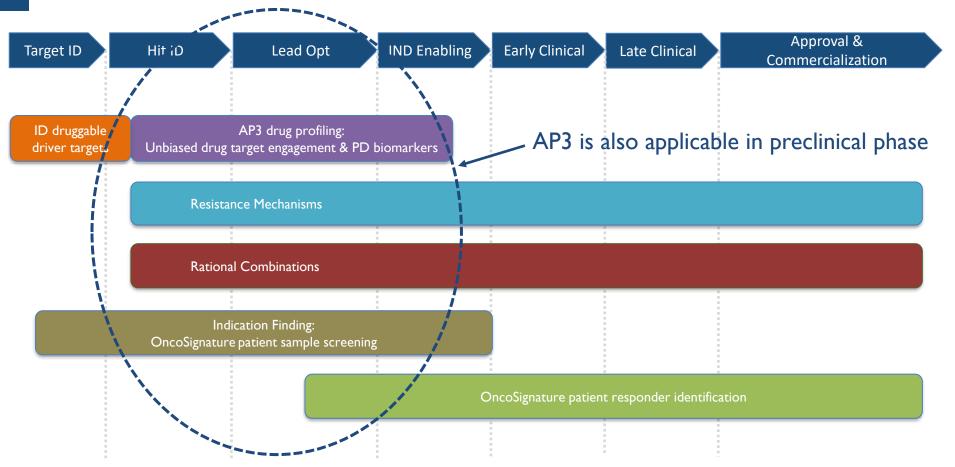
- Expert on DDR accelerated clinical development and predictive biomarkers
- · Previously oncologist Royal Marsden, London and Inst. Cancer Res. London
- Lead/P.I. on numerous DDR trials

David Berman, M.D., Ph.D. Professor, Director, Queen's Cancer Res. Inst., Ontario Canada

- · GU Pathologist; bladder cancer expert
- Expert on protein biomarkers and quantitative tissue imaging
- Academic lead on ProMark®

lesper V. Olsen, Ph.D. Academic Co-Founder Professor, Novo-Nordisk Foundation Protein Center, Cph. University

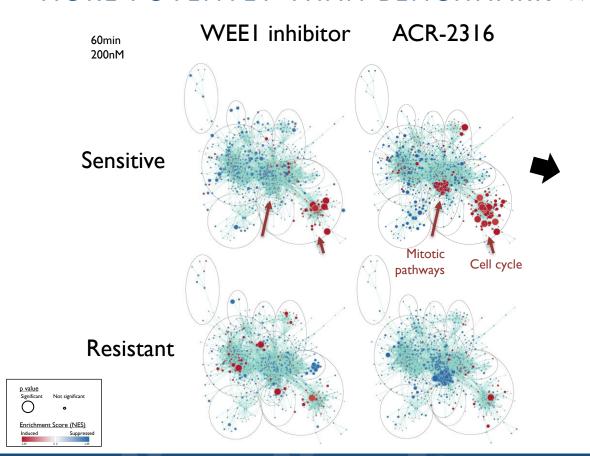
- · Recognized pioneer and leading authority in phosphoproteomics and proteomic systems analyses
- Top 0.1% most cited scientist in protein sciences

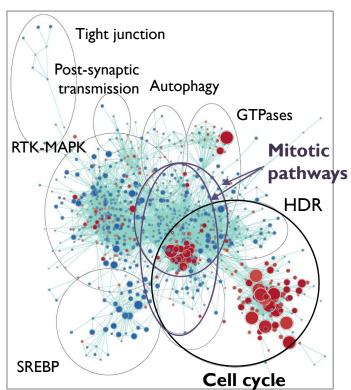

Jung-Min Lee, M.D. NCI Collaborator Investigator, Lasker Clinical Research

Scholar, NCI

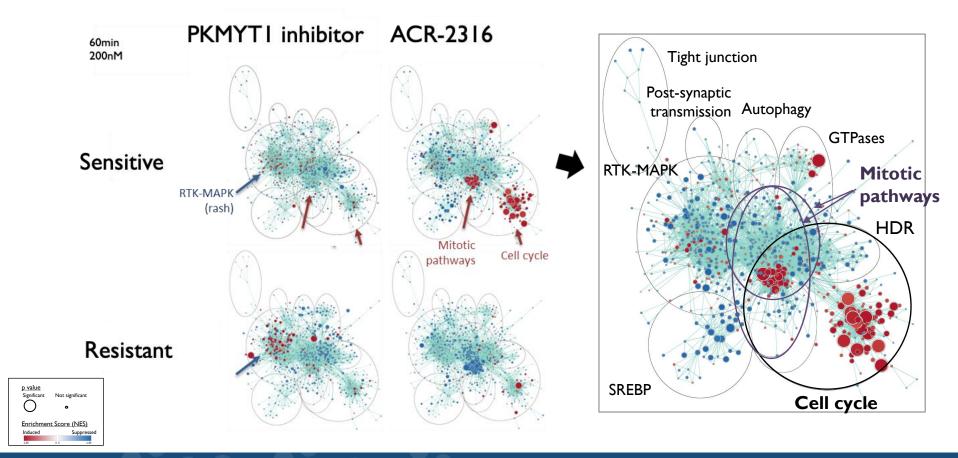
- Expert on women's cancers and DNA damage response (DDR)
- Lead and co-PI on numerous **HGSOC &TNBC trials**
- Lead PI on ACR-368 platinumresistant ovarian trials

AP3 IS APPLICABLE ACROSS DRUG DEVELOPMENT STAGES

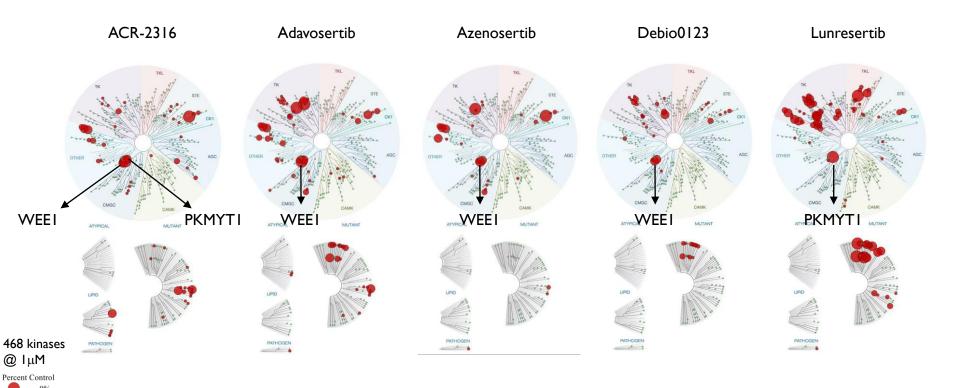

ACR-2316 MEETS PRE-SPECIFIED DEVELOPMENT CANDIDATE CRITERIA


	Target	ACR-2316
MOA	AP3 phosphoproteomics-based, optimized MOA; selective, dual WEE1/PKMYT1 inhibition	✓
Potency	 In vitro kinase activity, IC₅₀ ≤ 10 nM Potent in cell target engagement in optimized ratio Activity across sensitive human tumor cell lines, IC₅₀ <20 nM 	✓ ✓ ✓
Selectivity	 Kinase panel profiling – highly selective (kinome selectivity) AP3 profiling confirms desirable CDK and PLK activation for mitotic catastrophe/apoptosis 	✓
ADME/PK	 Orally bioavailable T½ suitable for once/day dosing 	✓
In vitro safety	• Low in vitro hERG (>10 $\mu M)$ and CYP inhibition and induction (>1 $\mu M)$	✓
Solubility	• > 50 μ M for active compounds	✓
PPB	• < 90%	✓
In vivo efficacy	 Demonstrated potent target engagement intratumorally in vivo Potent single agent activity in CDX models 	✓

KEY DATA: ACR-2316 VERSUS BENCHMARKS


	Assay	ACR-2316	Adavosertib	Azenosertib	Debio I 23	Lunresertib
Biochemical	Weel Binding IC ₅₀	l nM	I nM	2 nM	I nM	31 nM
	PKMYT1 Binding IC ₅₀	27 nM	155 nM	337 nM	2 μΜ	I0 nM
Cellular Target Engagement	WEEI EC ₅₀ (YI5)	2 nM	19 nM	I6 nM	109 nM	>10 µM
	PKMYTI EC ₅₀ (TI4 AlphaLISA)	145 nM	4 μΜ	2 μΜ	>10 µM	II nM
In Vitro Cancer Cell Viability	Human cancer cell viability IC ₅₀	11 nM (cell line 1) 17 nM (cell line 2) 21 nM (cell line 3)	52 nM (cell line 1) 127 nM (cell line 2) 96 nM (cell line 3)	48 nM (cell line 1) 111 nM (cell line 2) 128 nM (cell line 3)	165 nM (cell line 1) 338 nM (cell line 2) 94 nM (cell line 3)	372 nM (cell line 1) 400 nM (cell line 2) 173 nM (cell line 3)
	Human PDX (CTG-3226) viability IC ₅₀	0.011 μΜ	N/A	0.209 µM	N/A	3.69 µM
Selectivity	Kinome selectivity: S(35) / S(10)	0.091 / 0.071	0.172 / 0.101	0.101 / 0.071	0.062 / 0.03	0.121 / 0.101
In Vivo Efficacy	CDX model I efficacy [T/C (%) / dose mg/kg (frequency)]	0.6 % / 45 mg/kg (QD)	23 % / 60 mg/kg (QD)	26.8 % / 100 mg/kg (QD)	66.4 % / 30 mg/kg (QD)	33 % / 20 mg/kg (BID)
	CDX model 2 efficacy [T/C (%) / dose mg/kg (frequency)]	1.7 % / 60 mg/kg (QD)	N/A	41 % / 100 mg/kg (QD)	87 % / 30 mg/kg (QD)	36 % / 20 mg/kg (BID)
	Ovarian PDX model Efficacy [T/C (%) / dose mg/kg (frequency)]	20 % / 45 mg/kg (QD)	N/A	116 % / 60 mg/kg (QD)	N/A	122 % / 18 mg/kg (BID)

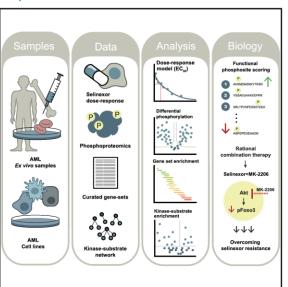
AP3 ANALYSIS: ACR-2316 REGULATES CELL CYCLE AND MITOSIS MORE POTENTLY THAN BENCHMARK WEEL INHIBITOR



AP3 ANALYSIS: ACR-2316 REGULATES CELL CYCLE AND MITOSIS MORE POTENTLY THAN BENCHMARK PKMYTI INHIBITOR

COMPREHENSIVE KINOME SELECTIVITY PROFILING

KinomeScan


AP3 REVEALS SINGLE AGENT SENSITIVITY CONTEXT AND RATIONAL DRUG COMBINATIONS INDEPENDENT OF GENETIC INFORMATION

Cell Reports

Article

Phosphoproteomics of primary AML patient samples reveals rationale for AKT combination therapy and p53 context to overcome selinexor resistance

Graphical abstract

Authors

Kristina B. Emdal. Nicolàs Palacio-Escat. Caroline Wigerup, ..., Kristina Masson, Peter Blume-Jensen, Jesper V. Olsen

Correspondence

pub.saez@uni-heidelberg.de (J.S.-R.), kmasson@acrivon.com (K.M.), pblumejensen@acrivon.com (P.B.-J.), iesper.olsen@cpr.ku.dk (J.V.O.)

In brief

Emdal et al. combine phosphoproteomics of samples from patients with AML and functional phosphosite scoring to uncover clinically actionable molecular context for selinexor efficacy. Sensitivity to selinexor correlates with functional p53 and is enhanced with nutlin-3a, while resistance is associated with dysregulated AKT-FOXO3 signaling and overcome by combining with MK-2206.

Using spatial phosphoproteomics (Nat. Commun., 2021) Acrivon's AP3 platform can uncover single agent sensitivity and rational drug combinations for targets with complicated mechanism of action

Cell Reports, August 9, 2022

ELI LILLY ACR-368 HIGH LEVEL LICENSE TERMS (RIGHT OF FIRST NEGOTIATION)

- In-licensing completed 27 January 2021 •
 - WW exclusive rights with rights to sub-license
 - \$5M up front and low single digit percentage equity subject to ordinary dilution going forward
 - Aggregate development and commercial milestone payments of up to \$168M, of which \$5M is due prior to NDA
 - Tiered percentage royalty on annual net sales ranging from low single-digit up to a maximum of 10% subject to certain specified reductions
 - Drug product as well as drug substance sufficient to treat several hundred patients
 - Limited right of first negotiation expiring 45 days upon completion of certain clinical milestones